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Abstract

Flip-through is known as a rapidly focusing phenomenon at a wall leading to high loads without impact of liquid. In

order to simulate numerically these highly nonlinear waves, the boundary value problem is formulated in potential

theory without surface tension. A desingularized technique is used to compute the velocity potential. Conformal

mappings of the fluid domain simplify the formulation of the solution.

As shown by many contributors to the method of fundamental equations (another name to denote desingularized

methods), the suitable desingularizing distance must be chosen with care. Here the criteria for choosing it follow from

energy and mass conservation laws. This study shows what is the influence of an arbitrary additive constant to the

velocity potential regarding conservation laws. Validation tests are performed on a focused wave. Recommendations

are given regarding the choice of the desingularizing distance and the additive constant as well.

In order to better control the initiation of flip-through, the simulations start from an initial free surface deformation

in a rectangular tank, with or without varying bathymetry. The subsequent jet running along the wall, is described and

the corresponding loads are discussed. In particular in the present configuration, it is shown that, along the wall, the

maximum acceleration precedes the maximum of pressure contrary to the findings of previous studies. The sensitivity of

the results with regard to the shape of the initial deformation and the local bathymetry is discussed.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the numerous numerical methods for solving two-dimensional nonlinear free surface equations in potential

theory, there are some techniques which appear to be the simplest in terms of computational needs. In the footsteps of

Tuck (1998), we implement one of them in order to achieve highly deformed free surfaces with minimum computational

effort. To this end a desingularized technique is coupled to a conformal mapping scheme. The former method provides

a convenient framework for solving the potential flow problem. The latter technique substantially simplifies the

equations to be solved.
e front matter & 2010 Elsevier Ltd. All rights reserved.
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Desingularized techniques belong to the so-called Methods of Fundamental Solutions. A special issue of Engineering

Analysis with Boundary Elements (Volume 33, Issue 12, 2009) recalls the main steps from the pioneering work by

Kupradze and Aleksidze (1963) up to the numerous applications either for the rolling up of vortex sheet as done in

Krasny (1986), or the wave motion as done in Cao et al. (1991) among others.

In the present paper we are concerned with highly nonlinear free surface motion and the considered flows

are two-dimensional. The general framework follows from the equivalence between the flow kinematics around

an obstacle (inner or outer problem) and a distribution of singularities. The type of singularity depends on the type

of operator and possibly on the type of boundary conditions. Here the flow is described by the Laplace equation,

hence the corresponding Green function is the Rankine source. As we consider two-dimensional flows, this

Rankine source potential is a simple Log function. The principle of the desingularized method is to place the

singularities (defined by the Green function) at a short distance from the actual interface. In the present

application, the singularities are only distributed close to the actual free surface. There is a clear difference

between two-dimensional and three-dimensional applications since for the former case, complex variable theory

applies while for the latter case, numerical implementation, at least in terms of panelling the fluid boundaries,

requires as much effort as for any other classical boundary element method, equations are derived in Webster (1975) or

Gao and Zou (2008).

When using the desingularized method, we face the difficulty of the arbitrary choice of the short distance at which

the singularities are located. Alves (2009) gives some theoretical criteria and underlines the balance between

accuracy and ill-conditioning depending on the distance between the source points and the actual support of the

boundary condition. Young et al. (2005) assess the accuracy by applying the technique to the flow around a circle with

zero circulation for which an exact solution exists. For applications regarding the wave motion, this point is highlighted

by Cao et al. (1991). In their approach the singular points are located in the normal direction of the interface at a

distance

Ld

L
¼ ‘d

ffiffiffiffiffiffiffi
Dm

L

r
; ð1Þ

where L is a length scale, ‘d controls the amplitude of the desingularization. The parameter Dm is a measure of the

discretization, that is to say the distance between two consecutive markers. In their rather academic numerical tests,

Cao et al. (1991) show that there exists a minimum value of ‘d for which the accuracy is the best. Zhang et al. (2006)

simulate a soliton riding over a submerged bar and they adapt ‘d to those applications. By studying sloshing in a

rectangular tank, Tuck (1998) distinguishes the weakly nonlinear case from the highly nonlinear case. For the former

case he proposes placing each singularity along a vertical line originating from the associated marker which belongs to

the free surface. For strongly distorted free surfaces, the sources are placed along the normal to the free surface from the

associated marker. He proposed the distance

Ld ¼ a
L

N
; 2 � a � 3; ð2Þ

where L is the length of the tank and N is the number of markers. Tuck further underlines that his computations do not

require any smoothing.

It is not the purpose of the present paper to numerically analyze either the convergence or the ill-conditioning

of the problem in terms of the desingularizing parameter Ld. We rather proceed heuristically by tuning the parameter

Ld up to a value for which most applications work. The main reason for that is we consider highly nonlinear waves for

which we do not have any exact solutions. The only checking that can be done is the conservation of mass and energy.

The problem of conservation of mass and energy for unsteady flows is barely described in the literature when

desingularized techniques are used. Yet these are important features and we observe here that invariants (mass and

energy) are mainly conserved in time. However, when studying flip-through phenomena, an artificial increase of kinetic

energy may occur. This study aims to quantify these discrepancies. Recommendations are given to keep these

discrepancies to a minimum.

It is also the purpose of the present work to numerically examine the flip-through phenomenon. Since the pioneering

work by Cooker and Peregrine (1990), few numerical studies have been done on this topic. Longuet-Higgins and Oguz

(2005, 2007) and Longuet-Higgins (2001), starting from plausible free surface profiles and distribution of potential,

arrived at the expected jets with high accelerations. Recently Cooker (2010) investigated possible solutions of the

nonlinear free surface boundary conditions. He shows that the change of concavity of the free surface corresponds to

the occurrence of a pressure peak then an acceleration peak. In the present numerical study we shall show that this



Y.-M. Scolan / Journal of Fluids and Structures 26 (2010) 918–953920
chronology is inverted. The simplest explanation is that Cooker (2010) deals with a local solution without accounting

for the influence of the rest of the flow. We should gain further insights into this difference by performing a very

localized parametric study on the basis of the technique detailed in Section 3.4.

It is difficult to perform experimental analysis of the flip-through phenomenon. The reasons are twofold: (i) we need

not only a high resolution in space but also a very high resolution in time; (ii) the control and repeatability of the flow is

a difficult task and requires much care. Typical features of the phenomenon are the occurrence of both a pressure peak

and an acceleration peak. Even if a high speed camera may provide the fluid motion, derivatives are required to get the

full kinematics including acceleration. Uncertainties are also well known while measuring the pressure peak.

In spite of repeated experiments, dispersion around mean values cannot be avoided. Yet some experimental

studies exist. Lugni et al. (2005, 2006) proposed a classification of flip-through into three types, depending mainly on the

wave profile before impact. However, flip-through, as described by Cooker and Peregrine (1990), can be considered

as the transition between the fully developed cavity which collapses and a simple run-up along the wall. A precise

description of the phenomenon is urgently required in order to better understand the physical mechanisms of

this transition.

It is the purpose of this paper to describe some recent results obtained with the technique outlined above. The

following developments start with a description of the numerical schemes: desingularized method and conformal

mapping (Sections 2.1–2.4). The different initial conditions studied are listed in Section 2.5 and conservation laws

are established in Section 2.6. The combined influences of the desingularizing distance and the additive constant

to the velocity potential are analyzed in Sections 2.7 and 2.8. Applications are presented in Section 3. In particular,

it is shown that the occurrence of the flip-through phenomenon is highly dependent on the variation of the

parameters defining the initial conditions (see Section 3.1). However, when it occurs, its evolution is independent of

the type of the initial conditions used to generate it (see Section 3.3). Perspectives for future work are outlined in

Sections 3.4 and 3.5 regarding the influence of a local bathymetry and some artificial techniques which allow a wider

parametric study.
2. Numerical modelling

The fluid domain is denoted OðtÞ, its boundary is denoted @OðtÞ and the free surface Fs(t) is a part of it. That is

illustrated in Fig. 1.

The governing partial differential equation is the Laplace equation for the velocity potential. We prescribe

homogeneous Neumann boundary conditions on walls since they are impermeable and they do not move in time. On

the free surface we classically prescribe the continuity of stress and velocity.

The implemented numerical scheme is composed of two techniques. In a first step, different conformal

transformations are sequentially implemented, so that the solid boundaries of the fluid domain are turned into a

rectilinear axis. By mirroring the free surface line with respect to this rectilinear axis, the fluid domain is closed. That is

the key feature of the present model since the resulting boundary value problem is an interior Dirichlet problem and

Dirichlet boundary conditions are only prescribed on the free surface. The velocity potential is hence broken down into

elementary solutions which implicitly account for the homogeneous Neumann boundary conditions on the

impermeable solid walls. This BVP reads

Df¼ 0 in the fluid; f¼ eð ~M ;tÞ on the free surface; ð3Þ

where ~M denotes the two-dimensional position of point M on the free surface and the function e follows from the

solution of the time differential system composed of kinematic and dynamic free surface boundary conditions.

This section describes how the conformal mappings are built and how to solve BVP (3).

2.1. Conformal mapping

When solving the two-dimensional Laplace equation through the use of a Green function, it is worthwhile searching

for a coordinate system in which the boundary conditions can be implicitly accounted for in the expression of the Green

function. That depends on the simplicity of the geometry. Conformal mappings are hence used to obtain the new

suitable coordinate system.

Conformal mapping is not used to map the instantaneous fluid domain, but only the domain bounded by the

walls of the tank whatever its filling ratio. For a simple rectangular tank with flat bottom, the physical domain



Fig. 1. Successive conformal transformations used to account for a bathymetry. (1) original physical plane, the length of the tank is L.

The nonhorizontal bathymetry is defined by the equation y=f(x) in the coordinate system ð0; ~x;~yÞ centered at the lower left corner. In

this plane the fluid domain is denoted OðtÞ, with boundary @OðtÞ and the free surface FS(t) is a part of it. (2) addition of the symmetrical

domain with respect to the vertical axis x=0, due to symmetry the segment DH is no longer a material boundary, (3) domain after

Schwartz–Christoffel transformation defined by Eq. (5), (4) addition of the symmetrical domain with respect to the horizontal axis

Z¼ 0, (5) domain after Karman–Trefftz (corner removal procedure at points C, D and E) and Theodorsen–Garrick transformations

which turns a near circle into a unit circle, (6) domain after transformation (8).
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is hence a semi-infinite strip. When there is a bathymetry along the bottom, in addition, a sequence of standard

conformal transformations are used to tackle simply connected bodies; details can be found in Scolan and Etienne

(2008).

In the present case we basically consider a rectangular basin with length L. The fluid is then contained in a semi-

infinite strip defined in the physical coordinate system as illustrated in Fig. 1(1). The origin O of the coordinate system is

always located at the bottom left corner. The horizontal and vertical axes are denoted x and y, respectively, with the

corresponding normalized vectors ~x and ~y. A bathymetry can be introduced in the tank; it is defined by the equation

y= f(x).

If the bottom is flat and horizontal, we use Schwartz–Christoffel transformation, that is described in Spiegel

(1999, p. 206) with a sign error

z¼�cos
pz

L
: ð4Þ

Then the images of the vertical walls are now located along the real axis of z�plane. If there is a bathymetry, we use

Schwartz–Christoffel transformation

z¼ sin
pz

2L
; ð5Þ

and from the Z-plane (see Fig. 1(1)), including its symmetric part with respect to the left vertical wall (Z-plane in

Fig. 1(2)), we get the z�plane (see Fig. 1(3)), by ‘‘flattening’’ the two end walls placed at x¼7L. Then the symmetric

domain with respect to the horizontal axis is introduced (see Fig. 1(4)). The local bathymetry and its images is now a

closed contour. There are corners along this contour. Those corners exist if df =dxaO at point D, if jdf =dxja1 at

points C or E or at any point when df/dx is not continuous. In order to further transform the domain into a simpler

one, we use the Karman–Trefftz (KT) transformation as described in Halsey (1979). The formula of this transformation
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links the new complex coordinate z0 to the original complex coordinate z, and it reads

z0 ¼
1

2

Zt�Zc

ð2�a=pÞ

1þ
z�Zt

z�Zc

� �1=ð2�a=pÞ

1�
z�Zt

z�Zc

� �1=ð2�a=pÞ
; ð6Þ

where a is the inner angle at a given corner and the complex coordinate z¼Zc denotes a geometrical center of the shape. The

transformation 6 turns a shape with corner at complex coordinates z¼Zt into a shape which is smooth at the image z0 of
z¼Zt. The transformation 6 is used as much as necessary for each corner along the contour. However due to double

symmetry of the shape, this operation can be optimized. After removing all the corners, the obtained shape is smooth but it

does not have a regular contour. A Theodorsen–Garrick (TG) transformation as described in Theodorsen and Garrick (1933),

is then used. The corresponding conformal function links the original complex coordinate z0 to the new complex coordinate t, it

reads

z0 ¼ t � exp½
P1

n ¼ 0
bnt�n �: ð7Þ

The complex coefficients bn are computed via a fixed point scheme and Fast Fourier Transform as described in Ives (1976). In

practice an accuracy of 10�12 is imposed. At convergence, a perfect circle is obtained. It is worth recalling that Warchawski

(1945) provides conditions on the speed of the iterative scheme: the closer to a circle the shape in z0�plane, the faster the fixed
point algorithm. The combination of KT transformation and TG transformation is illustrated by passing from sketch (1–4) to

(1–5) in Fig. 1.

Finally we arrive at a unit circle in the t-plane. We use the transformation

w¼
1

2
tþ

1

t

� �
; ð8Þ

which turns the outer domain of the unit circle into the outer domain of a flat plate lying on the real axis. Therefore, the

image of the original fluid domain is now located in the first quarter bounded by the positive real axis and positive imaginary

axis. Correspondingly the images of the physical walls are all located along those axes. By adding the symmetrical images of

the fluid domain in the three other quarters, the impermeability conditions are straightforwardly satisfied.

As a result of the successive conformal mappings, we have to calculate routinely the image w of a point z in the

physical plane, we denote g this mapping function: z=g(w) and the Jacobian of the transformation is the product of the

successive conformal transformations:

JðwÞ ¼
dz

dw
¼

dz

dz
dz
dz0

dz0

dt

dt

dw
: ð9Þ

All the elementary Jacobians can be formulated analytically, by deriving the expressions (4)–(8). In the sequel the

Jacobian J may have as argument either z or w, since z=g(w) implicitly.

It should be noted that the elementary Jacobian dz=dz0 vanishes at the corners. The elementary Jacobian dw=dt also

vanishes on the real axis at w¼71. That means that the computation of the velocity in the physical domain (even

though it is finite at points E or D) requires some care.

Another difficulty may arise when inverting function g, that is to say, calculating z for a given value of w. Eqs. (4)–(8)

are easily invertible. Eq. (7) is inverted numerically via a Newton scheme since its derivative is easily computed.

2.2. Adapted Green function

As the transformation is conformal, we still solve Laplace’s equation in the final coordinate system. In particular, a

Green function which satisfies the boundary conditions is easily derived. These boundary conditions mean that the walls

are impermeable and the corresponding Neumann conditions are satisfied by adding images of the Green function with

respect to the two axes of the coordinate system.

In practice it is simple when there is no bathymetry since considering a source at o and adding its reflexion1 at o with

equal strength, implies that the whole horizontal axis is the support of a homogeneous Neumann condition. In fact it is

easy to check that the resulting complex potential

F ¼ logðw�oÞ þ logðw�oÞ; ð10Þ
1The overbar denotes the complex conjugate.
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is such that the complex velocity on the horizontal axis IðwÞ ¼ 0 is real

dF

dz
¼

dF

dw

dw

dz
; ð11Þ

where dw=dz follows from Eq. (4).

When we consider a bathymetry, it is slightly more complicated. We place sources with equal strength, at the four

points o, o, �o and �o. The corresponding complex potential reads

F ðw;oÞ ¼ logðw�oÞ þ logðwþ oÞ þ logðw�oÞ þ logðwþ oÞ; ð12Þ

¼ logðw2�o2Þ þ logðw2�o2Þ; ð13Þ

¼ logðw4�2w2Rðo2Þ þ joj4Þ: ð14Þ

As a result, the formulation of the Rankine Green function depends on the presence of a bathymetry

Gðw;oÞ ¼
logjw2�2wRðoÞ þ joj2j no bathymetry;

logjw4�2w2Rðo2Þ þ joj4j with bathymetry:

(
ð15Þ

In the sequel we introduce XþiY the complex coordinate of a source in the physical plane which is the image of o in the

transformed plane w through X þ iY ¼ gðoÞ.

2.3. Desingularized technique

The desingularized technique can be now implemented. A finite set of sources are introduced in the physical domain along

a curve at a small distance from the actual position of the free surface. There are N sources and their indices are j 2 ½1 : N�.

The corresponding velocity potential calculated at any point (x,y) in the physical plane and at any instant t, reads

fðx;y;tÞ ¼
XN

j ¼ 1

qjðtÞGðx;y;XjðtÞ;YjðtÞÞ; ð16Þ

where (Xj,Yj) are the location of source number j and qj is its strength. For the sake of simplicity the time dependency is now

omitted. The Green function G follows from

Gðx;y;Xj ;YjÞ ¼Gðw;ojÞ; xþ iy¼ gðwÞ; Xj þ iYj ¼ gðojÞ: ð17Þ

The velocity components (U,V) in the physical plane hence follows from

U�iV ¼
XN

j ¼ 1

qjðtÞ
dw

dz

dF

dw
ðw;ojÞ; ð18Þ

where the derivative dF=dw is simply

dF

dw
¼

2w�2RðoÞ
w2�2wRðoÞ þ jo2j

� �
no bathymetry;

4w
w2�Rðo2Þ

w4�2w2Rðo2Þ þ jo4j

� �
with bathymetry:

8>>><
>>>:

ð19Þ

2.4. Time marching scheme

The time differential system follows from the continuity of pressure and the velocity written at the moving interface.

Both equations must hence be written in a Lagrangian way and they read

df
dt

¼
1

2
ðU2 þ V2Þ�gðy�hÞ;

dx

dt
¼ U ;

dy

dt
¼ V ;

8>>>>>><
>>>>>>:

ð20Þ
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where d/dt is the total time derivative, (x,y) are the Cartesian coordinates of the Lagrangian fluid particles or

markers always located at the free surface. The time stepping is achieved by using a fourth order Runge–Kutta

algorithm. At each intermediate step of the algorithm, the source positions are updated and their intensities

as well.

At a given instant t of the resolution, we know fðx; y; tÞ at discrete points (x,y) along the free surface, say (xi,yi) the ith

point. By using Eq. (16) written at N points (xi,yi), we get a linear system whose ith line reads

fi ¼
XN

j ¼ 1

Gijqj with
fi ¼ fðxi; yi; tÞ;

Gij ¼Gðxi;yi;XjðtÞ;YjðtÞÞ;

(
ð21Þ

provided that N sources located at (Xj,Yj) are introduced. The square matrix with coefficients Gij is denoted G. In

practice the position (Xj,Yj) is determined from the position of the markers (xj,yj) and the distance along the local

normal direction ~n is simply

ðXj ;YjÞ ¼ ðxj ;yjÞ þ Ld~n with Ld ¼ d
L

N
and 1ojoN: ð22Þ

In most computations d¼ 1; this arbitrary choice works as long as short time simulations are performed. For longer

time simulations, d can be increased. For very short time simulations, d can be decreased. More precisely, we may face

numerical difficulties when overlapping of sources occurs and when markers (and consequently sources) get too close to

each other. The pathology is evident when solving the linear system (21) since two lines become more and more similar

and thus the linear system is less and less invertible. Remedies consist in re-gridding the free surface; however, this

option is to be avoided as far as possible. As a consequence, we always keep the sources down to the minimum possible

provided that conservation laws are checked with the required accuracy.
2.5. Initial conditions

At first glance, the present approach offers few possibilities to model an actual Numerical Wave Tank. It is obviously

difficult to introduce a moving boundary like a wavemaker or even an absorbing beach. However, this is a difficulty

which can be easily circumvented, provided that other approaches, such as the Boussinesq model, can generate realistic

distributions of velocity potential and free surface elevation: that is, enough to define initial conditions and start the

time differential system (20).

Along these lines tests have been performed on the basis of experiments carried out by Scolan et al. (2007) in

the wave flume of Ecole Centrale Marseille. Kinematics in overturning crests are hence computed and compared to

experimental data. Small discrepancies are recorded: 5% on the intensity of the velocity, 10% on the direction of the

velocity.

Generation of a focused wave is a classical way to achieve steep waves. Recently Bredmose et al. (2010) proceeded

that way to simulate flip-through. By tuning the position of the focus point, several wave configurations at the vertical

wall can be obtained. They range from air-pocket (or cavity) to run-up without overturning crest. Flip-through occurs

at the transition between these two configurations. It should be noted that when gas is entrapped, effects of

compressible gas become a significant influence on the time variation of both the local free surface shape and the loads.

In this regard computational results are shown in Bredmose et al. (2009). The present model cannot capture those

effects. But the same technique used by Zhang et al. (1996) could be implemented.

As a first validation test, we apply the present model to a focused wave. Fig. 2 shows successive snapshots

of the wave profile as a focused wave arrives at the left vertical wall. The present model is compared to results

based on a ‘‘pure’’ boundary element method developed by Chambarel et al. (2010). The initial condition is generated

by the Boussinesq model developed by Kimmoun et al. (2009). This initial state is plotted in the top

figure. The wave profiles are then plotted at three other instants: t=1.01, 1.91 and 2.03 s. The wave profiles are

identical. There is, however, a remarkable difference between the two numerical approaches, which concerns

the required computational resources: CPU-time and memory. For the application illustrated in Fig. 2, the

desingularized technique requires 350 markers throughout the time simulation, whereas the standard BEM starts with

260 and ends up with more than 570. It should be also noted that the desingularized method needs neither smoothing

nor re-gridding of the free surface. The mass and energy are otherwise conserved with errors less than 0.01% and 0.1%,

respectively.
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Fig. 2. Comparison of free surface profiles as a focused wave develops at the left vertical wall. The profiles are obtained either with the

present method or with a standard BEM developed by Chambarel et al. (2010). The top profile is the initial condition, it is computed

with a Boussinesq model developed by Kimmoun et al. (2009). The other three profiles correspond to time t=1.01, 1.91 and 2.03 s

from top to bottom.
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As an alternative to wave generation based on the initialization with the Boussinesq model, we can model an actual

tank in forced motion. Reformulation of the nonlinear free-surface conditions in a moving coordinate system, as done

in Faltinsen et al. (2000), is a natural way to study sloshing in a tank. That will be a future application of the present

model.

In fact, much computational effort can be saved by adopting another approach. If the purpose is simply the

reproduction of flip-through, it is better to shorten the time simulation as much as possible. We can thus (i) avoid

numerical instabilities, (ii) diminish the accumulation of numerical errors and (iii) increase the control on the wave

configuration of interest.

In the present context, we start with three different types of initial condition. The simplest one is the first sloshing

mode of a rectangular basin:

y¼ h�Acos
px

L

� �
; 0oxoL; ð23Þ

where L is the length of the tank, h is the mean water depth, A is the amplitude of the mode. The shape is defined in a

coordinate system where the origin is the bottom left corner. In order to increase the slope of the initial difference in

height and therefore improve the control on the transition between air-pocket and run-up, it is better to use either a
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hyperbolic tangent

y¼ hþ AtanhðRðx�L=2ÞÞ; 0oxoL; ð24Þ

or a part of a Gaussian shape

y¼ hþ Ae�Rðx�LÞ2 ; 0oxoL; ð25Þ

where R controls the slope of the difference in height. The computer program as implemented starts from rest with a

given potential energy and a zero kinetic energy. We can calculate the initial potential energy corresponding to each

considered shape

Epð0Þ ¼

1

4
rgA2L; Eq: ð23Þ;

1

2
rgA2 L�

2

R
tanh

RL

2

� �
; Eq: ð24Þ;

1

4
ffiffiffi
2
p rgA2

ffiffiffiffi
p
R

r
erfð

ffiffiffiffiffiffi
2R
p

LÞ; Eq: ð25Þ:

8>>>>>>><
>>>>>>>:

ð26Þ
2.6. Conservation of mass and energy

In potential theory and without artificial dissipation, we must check that both mass and energy are conserved. If we

denote by W(t) the volume of fluid at any time, we must satisfy the mass conservation law

W ðtÞ ¼

Z
OðtÞ

dv¼

Z
FSðtÞ

y~y �~nd‘¼ constant; ð27Þ

where the inner product times the differential term can be simplified since ~y �~n ¼ dx=d‘. If we consider the time

derivative of W, by using (16), we also have

dW

dt
¼

Z
FSðtÞ

f;n d‘¼
XN

j ¼ 1

qj

Z
FSðtÞ

Gj;n d‘; ð28Þ

where additional simplifications follow from ~x �~n ¼�dy=d‘. Ideally dW=dt¼ 0 by virtue of the Gauss theorem and by

recalling that walls are fixed in time. By denoting by E the total energy (kinetic and potential) the energy conservation

law reads

dE

dt
¼ 0; ð29Þ

EðtÞ ¼

Z
OðtÞ

1

2
r~r

2
fþ grðy�hÞ

� �
dv¼

1

2
r
Z

FSðtÞ

½f~rfþ gðy�hÞ2~y�~n d‘: ð30Þ

The integral in (30) can be further turned into a nonlinear quadratic form for qj. The interest of doing so is limited. In

both energy expressions, the integration is performed over the free surface Fs(t) only since the walls are impermeable

and fixed in time.

The numerical verifications of dW=dt¼ 0 and dE=dt¼ 0 are the only way to validate the desingularized techniques

applied to nonlinear free surface flows. We have already mentioned the fact that from the initial instant up to numerical

divergence mainly due to disconnection2 of the free surface, we do not disturb the numerical integration, either by

smoothing, or by re-gridding. That means that markers are essentially ‘‘free to move as they want’’, and it is worth

noting that the markers remain at a reasonable distance from each other and, when they get closer, this concentration of

markers occurs in the area where the curvature radius becomes small. On the other hand there is a numerical parameter

Ld which is chosen arbitrarily; this is the distance of desingularization. As a consequence, if we enforce either the

conservation of mass or the conservation of energy, it is more than likely that we cannot choose Ld as arbitrarily as

before. In order to illustrate this incompatibility, numerical tests are performed by coupling the linear system (21) with
2In the present context, disconnection means that free surface ceases to be a simple continuous line without loop and before impact

on any boundary.
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the conservation of mass (27). That can be done by minimizing the functional

Iðq;lÞ ¼ jGq�fj2 þ ljdTqj; ð31Þ

where the two terms of the right hand side are, respectively, the discretized forms of Eqs. (21) and (28) and the

superscript T denotes the transpose of a matrix or vector. The factor l is a Lagrange multiplier which has no special

physical meaning. Minimizing Iðq; lÞ means that its partial derivatives with respect to the components qi and l must

vanish, yielding

I;qi
¼ 0;8i ) 2GGTq�2GTfþ ld ¼ 0;

I;l ¼ 0; ) dTq¼ 0:

(
ð32Þ

The following linear system is obtained:

2GGT d

dT 0

 !
�

q

l

	 

¼

2GTf

0

( )
: ð33Þ

Tests show that solving Eq. (33), whatever the choice of d, leads rapidly to numerical divergence whatever the

discretizations in time or space. As a consequence, if we must constrain the position of the singularities by solving

additional equations, desingularized techniques become less attractive, compared to the standard boundary integral

equation with collocation points on the actual boundary. Lalli (1997) confirms that the accuracy of the desingularized

method depends on a good choice of the parameter Ld and this choice depends on the considered applications. That

arbitrariness offers some perspectives since we know that errors are unavoidable.
2.7. The role of an additive constant in the velocity potential

We introduce an arbitrary additive function of time a(t) to the velocity potential. By definition, its time derivative can

be considered as the Bernoulli constant. By performing numerical tests, it appears that constant a(t) plays a role in the

computations.

Mathematically its influence is clear when the geometry is simple. However, from the literature the role of a(t) is still

an open problem. From the mathematical point of view, Christiansen (1976) reports that a(t) avoids the non-uniqueness

of the solution. However, in the present case we know that f is defined with an additive function of time. Bogomolny

(1985) minimizes its influence on the accuracy but ends up with the paradoxical conclusion: the higher the distance

between the actual contour and the singularities line, the better the approximation. Pozrikidis (2000) examines in which

circumstances the constant must be retained or not; that depends on the existence of a vanishing eigenvalue of the

single-layer operator (source distribution on the contour which encloses the whole fluid domain). Goldberg (1995)

mentions its dependence on the geometry of the computational domain. By introducing this constant as a normalization

factor Mathon and Johnston (1977) mention its role in the acceleration of the convergence when the locations of the

singularities are a part of the solution. Smyrlis and Karageorghis (2001) compare the condition numbers (ratio of the

smallest to the highest eigenvalues) of the matrices to invert with aðtÞa0 or a(t)=0. No improvements are observed

when the geometry is a disk. Here the considered problem is slightly more complicated since the positions of the

singularities vary in time and we expect a strongly irregular line along which singularities are placed (overturning crest,

local jet like flip-through, etc.). That is the reason why we pay great attention to this arbitrary choice and we quantify its

influence on conservation laws.

In practice we introduce a(t) in Eq. (16) yielding the following algebraic form:

fi ¼
XN

j ¼ 1

GijqjðtÞ þ aðtÞ: ð34Þ

This constant can be written as a factor times the source strength summation, say

aðtÞ ¼ b
XN

j ¼ 1

qjðtÞ; ð35Þ

where b does not depend on time (and obviously not on space either). In practice we invert the matrix Gþb1 instead of

G alone. All coefficients of matrix 1 are unity. That means the conditioning of the inverted matrix is modified. In fact it

is worth recalling what are the properties of the matrix G. We consider the Dirichlet problem formulated within a
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standard boundary element method. The corresponding integral equation reads

fðPÞ ¼
Z
@O

GðP;QÞqðQÞd‘: ð36Þ

If we evaluate the contribution of the singularity when P-Q, we clearly know that it is zero. That is the reason

why this problem, yielding a Fredholm equation of the first kind, is ill-conditioned since the diagonal of the

resulting matrix is not dominant. Actually Eq. (36) is not solved. As an alternative the integral equation obtained

by taking the normal gradient of Eq. (36) is solved. In the present context, the problem is completely different

since the source approaching the actual free surface may lead to a high value on the diagonal. The singularity grows

like Log Ld. By introducing a constant a(t), we add the constant b to each coefficient of the matrix to be

inverted. Numerical experiments show that the constant b has an influence on the duration of the simulation and

on the conservation laws. As a criterion of the accuracy of the numerical inversion, we systematically

evaluate the number of exact digits during the resolution. An easy way is to use a Gauss algorithm with an

additional right hand side made up of the summation per line of the coefficients of the matrix to be inverted; the

solution must be unity uniformly. The discrepancy with unity should be of the order of the precision of the processor

used, here 10�15.

We illustrate the role of constant b by computing the inverse matrix (Gþb1)�1 of Eq. (21)). We test the

algorithm with the initial condition (24). The simulation runs over 47 time steps Dt¼ 0:01 s and a space discretization is

defined by 150 equally distributed markers along the free surface line at the initial time. The simulation runs

over 48 time steps after which the case b=0 stops due to numerical divergence. The global comparisons

done in Fig. 3 on the free-surface profiles, do not show noticeable differences at each computed time step, at least

where the free surface is highly disturbed. The profile of the inverse matrice (Gþb1)�1 computed at instant t=0.47 s, is

drawn in Fig. 4. The diagonal coefficients are drawn as well. The comparisons done show that differences are hardly

noticeable at least where the coefficients reach their highest value. It is worth noting that we can ideally check the

following identity

ðGþ b1Þ�1 ¼G�1; ð37Þ
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if the summation of the coefficients of G by column is zero, i.e.

XN

i ¼ 1

G�1ij ¼ 0; 8j ¼ 1; . . . ;N : ð38Þ

The identity (37) is proved by multiplying both sides with Gþb1. This is a theoretical result and it is not certain that we

can prove that condition (38) can be necessarily checked regarding our boundary value problem. Paradoxically if

condition (38) is fulfilled, it would mean that the problem is highly ill-conditioned since this condition precisely means

that the lines of matrix G are not linearly independent. The main result is: using a nonzero constant b, we enforce

condition (38), and we can even show that the sum of the coefficients of G by line is low as well. In practice we obtain

the result

XN

i ¼ 1

ðG þ b1Þ�1ij o
M

jbj
;
XN

j ¼ 1

ðG þ b1Þ�1ij o
M 0

jbj
with M40 and M 040; ð39Þ

which can be easily proved. As an illustration the quantities in Eq. (39) are plotted in Fig. 5. It is worth noting that

disturbances appearing when b=0 at nodes � 140 (on the right side), disappear as soon as b40. Disturbances are

necessarily correlated to a sudden short distance between two successive markers. Fig. 6 shows the time variation of this

distance; the shortest distance is obtained precisely at node #146. The connection between condition (39) and

conservation laws (28) and (30) is difficult to establish, but, from numerical experiments, we can show that the effects of

a nonzero constant b seem to inhibit the development of numerical disturbances. For the same application case we plot

in Fig. 7 the time variation of the discrepancies on the conservation of mass and energy. Improvements due to ba0 are

clear.

The factor b is not the only parameter which influences the numerical scheme and the conservation laws. The next

section analyses more deeply the combined effects of factor b and the desingularizing distance Ld.



1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160

S
um

 o
ve

r j
 o

f |
G

ij*
*(

-1
)|

Index line i

b=0
b=10

b=1000

Fig. 5. Variation of the sum of the coefficients of (Gþb1)�1 by line at t=0.47 s for three values of b=0, 10, 1000. The initial condition

is defined in the caption of Fig. 3. Disturbances appear for b=0 about node 146.

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
in

 o
f d

is
ta

nc
e 

be
tw

ee
n 

m
ar

ke
rs

 (/
L)

Time (s)

b=0
b=10

b=1000

Fig. 6. Time variations of the minimum distance between two successive markers for three values of b=0, 10, 1000. The initial

condition is defined in the caption of Fig. 3. For b=0, the smallest distance is reached at node 146.

Y.-M. Scolan / Journal of Fluids and Structures 26 (2010) 918–953930



1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
el

at
iv

e 
er

ro
r

Time (s)

energy b=0
energy b=10

energy b=1000
mass b=0

mass b=10
mass b=1000

Fig. 7. Time variation of the relative error on conservation laws: mass and total energy for three values of b=0, 10 and 1000. The

initial condition is defined in the caption of Fig. 3.

Y.-M. Scolan / Journal of Fluids and Structures 26 (2010) 918–953 931
2.8. The role of the desingularizing distance

In order to justify our choice of Ld, we consider two examples. The first concerns the weakly nonlinear case and we

start with the first sloshing mode of a rectangular basin (see Eq. (23)). If the amplitude A is low enough, the simulation

can last endlessly. Results are obtained with A=0.2m, h=0.75m and L=4m. Fig. 8 shows the time variation of the

free surface elevation at left intersection with the vertical wall when d¼ 1 and values of b varying in the range

b 2 ½0 : 10 000�. Whatever the value of b the results for these long simulations are quite similar except for b=0 for which

slight differences appear after a while (say t42:5 s). Fig. 9 illustrates the influence of d while b is set to a constant

b=1000. Main discrepancies appear when do1 except at the early stage of the fluid motion (here up to t=1.2 s). In the

present application, it is observed that d cannot be greater than 3, otherwise the simulation stops prematurely. The time

variations of the different quantities W(t) from Eq. (27) and E(t) from Eq. (30), while parameters Ld and b vary, are

compared as well. The influences of both parameters d and b appear clearly. This confirms the fact that d cannot be

lower than 1 and b must be high enough to be sure that discrepancies on mass and energy conservation are reasonable,

that is to say below 1%. In the present case b must be greater than 1000. Figs. 10 and 11 sum up the results in terms of

the standard deviation of the relative error with the theoretical result, that is to say perfect conservation of mass and

energy. It should be noted that the standard deviation for d¼ 3 is calculated over a much shorter duration than other

cases. These results confirm the preponderant influence of d on the conservation laws at least for this weakly nonlinear

application.

However, when the liquid motion becomes highly nonlinear, disconnection of the free surface or overturning crests

occur rapidly and the duration of a simulation becomes much shorter. As an illustration, we consider the initial

condition defined by a first mode of the rectangular tank (see Eq. (23)) but with a higher initial amplitude A=0.4m.

Fig. 12 shows the corresponding free surface profiles as the crest develops for the two values d¼ 1 and 1.6. It is shown in

the present case that d must be greater than 1 (in fact d¼ 1:6) in order to get the best compromise combining a long

enough simulation and the best conservation of mass and energy.

We next consider the fluid motion resulting from the initial condition (24). This case is of great interest since it will

provide the initial conditions of the flip-through. The initial amplitude is A=0.495m, the mean liquid level is

h=0.75m and the length of the tank is L=4m. The highest slope is located at the middle of the tank and it is tuned
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with the coefficient R, here R=2.4. We test different desingularizing distances varying in the interval d 2 ½0:5 : 2�. The
constant b is set to b=1000 which is high enough to improve the mass and energy conservation. Fig. 13 shows the

computed free surface profile at a given instant t=0.62 s as the parameter d varies. Over the whole length of the tank,

we observe wide discrepancies between d¼ 0:5 on one side and d41 on the other side. Only slight discrepancies occur
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for the different considered values of d41. It should be noted that these differences seem to occur mainly in the right

hand side of the tank and not where the crest starts overturning on the left hand side.

Time variation of relative errors on energy and mass are plotted in Figs. 14 and 15, respectively. Here again, the

numerical tests confirm that d must be greater than or equal to unity in order to get reasonable conservations of both
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mass and energy. However, when d42, numerical divergence may occur, thus shortening the duration of the

simulation. In the present case d¼ 1 is indeed the best compromise between stability and accuracy.
3. Some features of the flip-through phenomenon

We aim to examine some aspects of the flip-through phenomenon. Experimental observations show that its

occurrence corresponds to a transition between the formation of an air-pocket (or cavity) and a smooth run-up along

the wall. The typical computed free surface profiles are plotted in Fig. 16 starting from the initial deformation given by

Eq. (24). The obtained wave kinematics is quite similar to the kinematics of a soliton riding on a gently sloping beach. If

the fluid depth can be roughly approximated as h=0.75m, then the typical velocity of the front is
ffiffiffiffiffi
gh

p
¼ 2:7m=s and

the front arrives at the wall within the time interval of dt � 0:7 s. A critical profile is identified at the last stages of the

flow. Cooker (2010) showed that changes of concavity occur precisely when the local free surface profile has

the parabolic feature illustrated in Fig. 16. At that stage, there is a competition between the more or less fast run-up and

the nascent wave crest. As a consequence we observe that the velocity along the vertical wall and the velocity at the

vertical wave front (where the slope is nearly vertical) have quite similar amplitudes. The same observation has been

experimentally made by Lugni et al. (2006).

3.1. Parametric study

A parametric study is performed in order to identify some pairs of parameters (A,h) of interest. Two criteria are

retained: (i) fast run-up along the vertical wall and (ii) appearance of a significant peak pressure. By tuning the

amplitude A, we can progressively observe all the possible configurations ranging from a mild run-up to an entrapped

air pocket. It is clear that the present model cannot capture the influence of the entrapped air pocket. Faltinsen and

Timokha (2009) provide suitable models.

Figs. 17 and 18 illustrate two clearly different cases bounding the range of A in which we can simulate flip-through.

The only varying parameter is the amplitude A of the initial deformation. Figs. 17 and 18 show the ultimate stages of

the flow as the wave arrives at the left vertical wall. For each free surface profile, the corresponding pressure distribution

along the vertical is plotted as well. The superimposed curve follows the maximum of pressure of each instantaneous

pressure distribution.

When A=0.4m, we observe a standard run-up for which the pressure hardly goes above 170mbar. The free surface

does indeed flip along the wall, but no jet is observed. When A=0.54m on the contrary, a gas pocket appears. That

does not keep the pressure increasing continuously, as fluid impact on the wall is likely to occur before any maximum of

pressure is reached. On the other hand, entrapped gas modifies the loads most probably.
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at the left vertical wall.
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When flip-through is expected, the local curvature radius can become very low. At the last stage of the flow—flip

through is starting and very small curvature radii are expected—the corresponding desingularizing distance becomes

too high to prevent intersection of the sources line with the actual boundaries (wall or free surface itself). We can
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increase the number of markers, but that increases numerical instabilities as well. As noticed by Tuck (1998), the

desingularizing distance must be adapted. However, as shown earlier the consequences are that we disturb the

conservation laws.

3.2. Numerical adaptation to capture highly distorted free surface

In order to pursue the simulation the only way is to decrease as much as necessary the desingularizing distance locally

where curvature radii are low. In order to smoothly decrease Ld in the close vicinity of the wall, the following formula is

proposed

Ld ¼ d
L

N
ð1�ge�4s=LÞ; ð40Þ

where s denotes the curvilinear abscissa along the free surface measured from the left vertical wall. The numerical tests

show that d¼ 1 and g¼ 0:8 in formula (40) makes it possible to continue the simulation far enough and even when the

jet starts riding along the wall. As a first numerical test, we start with the same initial condition as in Fig. 17. The

amplitude of the initial difference in height is A � 0:52m, the slope at the mid tank is set by R=2, the length is L=4m

and the mean water level is h=0.75m. We use 155 markers uniformly distributed along the free surface line at the

initial time. The time step is set to Dt¼ 0:005 s and it is substantially decreased when tZ0:68 s with the consequence that

some computed quantities may have time discontinuities at that instant. In the meantime, at instant t=0.665 s, the
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source line is modified according to formula (40). Fig. 19 shows the pressure profiles and the corresponding free surface

profiles at some instant before and after the flip-through occurrence. Fig. 20 shows the results concerning the energy

and mass conservation. A clear discrepancy for energy is noticeable at the end of the simulation but both are conserved

satisfactorily. Fig. 21 sums up the results concerning the kinematics and the corresponding loads. The present case is

denoted by (tanh) since it corresponds to an initial hyperbolic tangent free surface deformation.

The time variation of the pressure peak is plotted and it can be compared to the time variation of the acceleration of

the tip of the rising jet. The maximum pressure (here about Pmax=0.4 bar) is reached at time t � 0:6918 s and follows

the instant at which the acceleration reaches its maximum at time t � 0:6859 s. Fig. 21 also show the time variation of

the positions along the left vertical wall of pressure peak ypmax
and the intersection point yx=0. The minimum distance

between the two points ypmax
and yx=0 occurs in the time interval between the maximum acceleration and the maximum

of pressure occurrences. This observation differs from those of Cooker (2010) for whom the maximum of pressure peak

occurs before the maximum of acceleration. Longuet-Higgins (2001) suggests in contrast that these two maxima are

concomitant. This concomitancy seems rather connected to a standard run-up configuration as illustrated in Fig. 17. It

is indeed observed that maximum of pressure and maximum of acceleration occur at precisely the same instant.

3.3. Influence of initial conditions on flip-through

In order to confirm the observed chronology, we start with another initial condition. Instead of a hyperbolic tangent,

we start with a half gaussian defined by Eq. (25). We choose L=4m, R=0.5m�2 and A=1m, hence the initial energy

is of similar order as for the case studied earlier. We can then compare the influence of the shape of the initial

deformation. Fig. 22 shows the free surface profiles—whatever the instants at which the profiles correspond—for an

initial shape of type (24) and of (25). For the sake of comparison, we adjust the origin in the vertical direction so that

the flip occurs roughly at the same vertical position. Fig. 22 shows a general view and a zoom locally as the jet develops.

In fact we cannot distinguish clear differences between the two configurations when the free surface flips at the wall,

whereas the fluid flows elsewhere are clearly different.

That is confirmed by examining other results such as the time variations of maximum of pressure and the kinematics

of the rising jet. They are plotted in Fig. 21. They are denoted by (gauss) in order to be compared to the previous results

when starting from an initial hyperbolic tangent free surface deformation. The same time lag dt¼ 0:2931 s is imposed on

all time histories so that we can surprisingly observe a reasonable superimposition of each signal. That confirms that

flip-through does not depend much on the type of initial condition as suggested by Peregrine (2003). That also suggests

that similarity solutions might exist.

The pressure profiles and the corresponding free surface profiles are shown in Figs. 23 and 24. In particular we select

in Fig. 24 some instants like those at which the pressure and the acceleration reach their maximum. The results confirm

the already observed chronology and the fact that the maximum of pressure occurs as the jet is already well developed.

In addition we compare the distribution of first two components of pressure in the Bernoulli equation
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They have the same order of magnitude but they are opposite in sign. In the present case they are about three times or

so the maximum total pressure. These spatial variations also show that fluid acceleration starts deep since the

component �rf;t has a greater spatial interval of variation than 1
2
rðrfÞ2. We hence can expect that a bathymetry will

have some influence on the initiation of the flip-through by inhibiting the run-up along the wall. In fact that is observed

in Section 3.5.
3.4. Artificial flip-through

We perform an exercise in order (i) to examine how the flip-through depends on the remaining part of the flow and

hence (ii) to reduce the number of markers. We thus use an artifact by truncating the fluid domain as soon as the

parabolic shape is obtained. Fig. 25 shows an example of domain truncation. In this example the distribution of free

surface elevation and the corresponding velocity potential on the left side of the cut are used to restart the code. It

should be noted that the origin for the hydrostatic pressure remains obviously unchanged after truncation. The new

length of the tank is now L � 1:4m instead of L � 4m. We hence restart a simulation with a plausible solution of the

boundary value problem since the cut becomes the new right vertical wall where a no flux condition is prescribed. As an

example along the axis x=1.4m, the computed velocity before truncation is mainly horizontal and its intensity is

roughly U=1.9m/s; which is very small compared to the maximum velocity reached while the flip-through is

developing.

That is an artifact but it works well since preliminary numerical experiments show that this truncation does not affect

either the time variation of maximum peak pressure or the fluid dynamics along the right vertical wall. However, the
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influence of the numerical parameters (position of the cut and possible re-gridding, etc.) would need to be investigated

more systematically if one aimed to justify rigorously the present heuristic choice.

The locations of the sources remain unchanged after the truncation. That means that the first part of the simulation

yielded enough concentration of markers in the vicinity of the smallest curvature radii, hence new markers are not

introduced. For the present case we end up with 60 markers after truncation. The obtained free surface profile is plotted

in Fig. 26. The source line is also plotted and it is defined according to formula (40). Fig. 27 show the time variations of

the velocity of the intersection point yx=0 between the free surface and the left vertical wall and its second time

derivative, thus the acceleration of this point. These variations are quite similar to those described by Longuet-Higgins

and Oguz (2005, 2007). However, there are no reasons to think that this flow contains a singularity occurring at a finite

time. These results compare better with the theoretical results obtained by Cooker (2010) (see his Fig. 1). It is worth

comparing the location of the instantaneous peak pressure (noted ypmax
) relative to the tip of the jet. This is plotted in

Fig. 27 as well. The peak pressure is thus identified at each instant and plotted in Fig. 27. Some spurious oscillations

occur and they are connected to the flip of the markers at the lowest point where the curvature radius is the smallest as

illustrated in Fig. 28. Increasing the number of markers does not improve the numerical solution; that is rather the

contrary. The peak of acceleration may reach a very high value (here gmax � 1800 times the acceleration of gravity).

That is of the same order of magnitude as those recorded in Peregrine (2003) or in Lugni et al. (2006). It should be noted

that the duration over which the acceleration is above 2000m/s2 is about dt � 2ms. That gives necessary information

on the requirements in terms of sampling frequency and the size of pixel, in order to capture such rapid variations by

using a fast camera and image processing. We note again that the peak of acceleration precedes the maximum of
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pressure reached during the simulation; here about pmax � 1:3 bar. The time interval between these two instants is

dt � 1:26ms, roughly one third of the duration of the present simulation. The horizontal force is computed and its

maximum value made non-dimensional with rgy2
x ¼ 0 is about 5. That is smaller than the maximum force computed by

Bredmose et al. (2009). Some characteristic instants are selected and the corresponding free surface profiles and pressure

distributions are plotted in Fig. 29. It is worth recalling that the initial instant of the simulation corresponds to the

configuration sketched in Fig. 26. We hence start with an already formed parabolic shape. Four instants are examined:
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at t=0.000820 s the flip-through did not occur, yet t=0.001506 s is the instant at which acceleration is maximum, the

pressure reaches its maximum at instant t=0.002772, and 0.004550 s corresponds to the last computed time. The

maximum of acceleration occurs when the free surface changes curvature at the wall. The jet develops and the

maximum of pressure follows. The contribution of the two components of the pressure are plotted, namely �rf;t and
� 1

2
rðrfÞ2; their corresponding contributions to the pressure are always opposite in sign. Their amplitude increases in

time up to the instant at which the vertical velocity along the wall at the intersection point reaches a threshold, here at

about f;y � 31m=s. Before that instant the inertial term contribution is preponderant and that is due to the increasing

acceleration of the fluid.
3.5. Influence of bathymetry on flip-through

We shall not perform an exhaustive parametrical analysis of bathymetric influence on the flip through phenomenon.

The space of parameters has too high dimension. That perspective will be the focus of future works. In fact, we simply

start from the initial condition (25) and we superimpose an elliptical bathymetry at the bottom of the left vertical wall.

The horizontal semi-axis is set to 1m long and the vertical semi-axis is variable; it varies within the range

B 2 ½0m; 0:1m�. Fig. 30 sums up the successive free surface profiles at similar instants; four instants are plotted. It

should be noted that, regardless the value of B, the profiles seem to intersect at the same spatial locations. For the ten

computed thicknesses B, Fig. 31 shows a snapshot of the free surface profiles at the same instant t=0.97956 s whatever

the thickness of the bathymetry. A zoom is plotted in the same figure. As expected, we observe that the only part of the

flow which is significantly affected, is above the changing bathymetry. Elsewhere the influence is hardly noticeable. In

Fig. 31, the zoom view shows: the flatter the bathymetry profile, the earlier the flip-through; the thicker the bathymetry
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profile, the more vertical the front of the arriving wave. In Fig. 32, we can compare the kinematics at the vertical wall.

The time variations of yx=0 and its first and second time derivatives are plotted. The general behavior is standard, the

acceleration reaches a maximum and then the velocity varies more slowly, but here the velocity never reaches a

threshold. In the present case, for Bo0:04m, the run-up goes on for a long duration until a small overturning crest

appears, roughly above t=0.98 s. We are mainly interested in what occurs before that instant. More precisely we

identify the time at which the maximum acceleration is reached. Fig. 33 show the variation of the maximum of

acceleration reached at the intersection point yx=0, in terms of the bathymetry thickness B. The variation of the instant

at which the maximum acceleration is reached at the intersection point yx=0 is plotted as well. The two curves are not

monotonical. We can conclude that two different scenarios are likely to occur. In Fig. 32 the interval of time variation

of the acceleration is shortened so that we can plot arrows corresponding to increasing thickness. There are two arrows

hence illustrating the non-monotonical behavior. The transition between the two scenarios seems to occur at

B � 0:05m. Below, it is questionable whether or not we are witnessing an actual flip-through. Above B � 0:05m, we

observe a clear vertical front and a nascent vertical jet. We do not perform any computation of the pressure since this

requires a great deal of computational time; that is due to the use of conformal mappings. However, we can expect that

the maxima of pressure become higher and higher above B � 0:05m.
4. Conclusion

The nonlinear free-surface problem in potential theory is solved by using a desingularized technique combined with

conformal mappings. This combination of techniques allows us (a) to reduce the number of unknowns, thus the rank of

the linear systems to solve, and (b) to provide a reasonably good stability of time simulation.

Some numerical aspects of the problem are investigated here. In particular the analysis of mass and energy

conservation laws shows on the one hand the importance of an arbitrary additive constant to the velocity potential and

on the other hand the influence of the desingularizing distance. Recommendations are listed regarding their choice for

the present applications. This can be considered as a drawback of the present method; however, the most suitable choice

leads to stable computations thus avoiding artificial techniques such as re-gridding or smoothing which are necessary

when using a standard BEM approach.

Rapid and robust algorithms are necessary to study the flip-through phenomenon. The results obtained are in good

agreement with experimental data and other numerical results. The flip-through phenomenon is identified as a

transition between standard run-up along a wall and the formation of an air pocket. High accelerations and high

pressures are reached within a very short time period. This kind of flow is shown to be very sensitive to the variation of

parameters but it does not depend much on the type of wave which yields it. For two types of initial conditions, it is
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observed that the peak of acceleration precedes the peak of pressure distribution along the vertical wall, as flip-through

develops. For the application cases considered here, we may conclude that the maximum of pressure always occurs at

the root of the jet. It is also observed that bathymetry plays an important role by influencing the run-up along the wall.

This study points the way to at least two new directions of research. Firstly comparisons with experimental data are

strongly required since very high loads are computed as the vertical jet develops along the wall. The existing

experimental studies have already shown the difficulties encountered due the very short duration of the phenomenon.

As it is known that flip-through does not depend much on the type of initial conditions, there are alternative ways to

capture it while repeatability is better controlled. One way is to start from a soliton riding on a sloping beach; its
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generation with a wavemaker is much simpler than a focused wave. Thus the influence of local bathymetry on the jet’s

development would be better investigated. As a consequence, not only the two-dimensionality of the flow is better

assessed, but also the statistical properties of pressure or the measurement of the local curvature radius at the wall are

better controlled.
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The second direction of research is mathematical. It is worth while noting the influence of an arbitrary additive

constant to the velocity potential on the conservation laws. That means the matrix conditioning must be better

investigated. However, the corresponding mathematical problem becomes very tricky since the free surface is highly

distorted.
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